Wavelet Transform Based Algorithm for High- Impedance Faults Detection in Distribution Feeders

نویسنده

  • Mudathir Funsho Akorede
چکیده

This paper presents a wavelet transform based technique for high-impedance faults detection in power distribution feeders. In this study, accurate electrical models for a HIF and capacitor switching event on a power network are developed and simulated using MATLAB. The analysis of the resulted fault signals, using the Discrete Wavelet Transform (DWT) yields single-phase current and voltage in the low frequency range, which are fed to a classifier for pattern recognition. The classifier algorithm in this paper is based on a moving window approach whereby the one-cycle window of the DWT output is moved continuously by one sample. The algorithm when tested with data obtained from various computer simulations carried out in this study, produced impressive results in HIF detection and discrimination. The major contribution of this work is that it is able to determine the magnitude of the fault current, which many earlier researchers did not consider in their works.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of high impedance faults in distribution networks using Discrete Fourier Transform

In this paper, a new method for extracting dynamic properties for High Impedance Fault (HIF) detection using discrete Fourier transform (DFT) is proposed. Unlike conventional methods that use features extracted from data windows after fault to detect high impedance fault, in the proposed method, using the disturbance detection algorithm in the network, the normalized changes of the selected fea...

متن کامل

High impedance fault detection: Discrete wavelet transform and fuzzy function approximation

This paper presets a method including a combination of the wavelet transform and fuzzy function approximation (FFA) for high impedance fault (HIF) detection in distribution electricity network. Discrete wavelet transform (DWT) has been used in this paper as a tool for signal analysis. With studying different types of mother signals, detail types and feeder signal, the best case is selected. The...

متن کامل

Cross Entropy-Based High-Impedance Fault Detection Algorithm for Distribution Networks

The low fault current of high-impedance faults (HIFs) is one of the main challenges for the protection of distribution networks. The inability of conventional overcurrent relays in detecting these faults results in electric arc continuity that it causes the fire hazard and electric shock and poses a serious threat to human life and network equipment. This paper presents ​an HIF detection algori...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

Fuzzy Logic Technique for High Impedance Fault Detection in Distribution Feeder

The distribution feeder faults need to be detected and isolated in a reliable Maintenance and operation of a distribution type electrical power system, calls for a safe, reliable and efficient fault detection systems. As the number of techniques available to detect faults do not address the above concerns in to-to, especially in the case of a High Impedance Faults. Keeping in view of aforesaid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010